novel design of n-bit controllable inverter by quantum-dot cellular automata
Authors
abstract
application of quantum-dot is a promising technology for implementing digital systems at nano-scale. quantum-dot cellular automata (qca) is a system with low power consumption and a potentially high density and regularity. also, qca supports the new devices with nanotechnology architecture. this technique works based on electron interactions inside quantum-dots leading to emergence of quantum features and decreasing the problem of future integrated circuits in terms of size. in this paper, we will successfully design, implement and simulate a new 2-input and 3-input xor gate (exclusive or gate) based on qca with the minimum delay, area and complexities. then, we will use xor gates presented in this paper, in 2-bit, 4-bit and 8-bit controllable inverter in qca. being potentially pipeline, the qca technology calculates with the maximum operating speed. we can use this controllable inverter in the n-bit adder/subtractor and reversible gate.
similar resources
Novel Design of n-bit Controllable Inverter by Quantum-dot Cellular Automata
Application of quantum-dot is a promising technology for implementing digital systems at nano-scale. Quantum-dot Cellular Automata (QCA) is a system with low power consumption and a potentially high density and regularity. Also, QCA supports the new devices with nanotechnology architecture. This technique works </...
full textDesign of Optimized Quantum-dot Cellular Automata RS Flip Flops
Complementary metal-oxide semiconductor (CMOS) technology has been the industry standard to implement Very Large Scale Integrated (VLSI) devices for the last two decades. Due to the consequences of miniaturization of such devices (i.e. increasing switching speeds, increasing complexity and decreasing power consumption), it is essential to replace them with a new technology. Quantum-dot c...
full textA Novel Design of a Multi-layer 2:4 Decoder using Quantum- Dot Cellular Automata
The quantum-dot cellular automata (QCA) is considered as an alternative tocomplementary metal oxide semiconductor (CMOS) technology based on physicalphenomena like Coulomb interaction to overcome the physical limitations of thistechnology. The decoder is one of the important components in digital circuits, whichcan be used in more comprehensive circuits such as full adde...
full textFault-tolerant adder design in quantum-dot cellular automata
Quantum-dot cellular automata (QCA) are an emerging technology and a possible alternative for faster speed, smaller size, and low power consumption than semiconductor transistor based technologies. Previously, adder designs based on conventional designs were examined for implementation with QCA technology. This paper utilizes the QCA characteristics to design a fault-tolerant adder that is more...
full textNovel Defect Terminolgy Beside Evaluation And Design Fault Tolerant Logic Gates In Quantum-Dot Cellular Automata
Quantum dot Cellular Automata (QCA) is one of the important nano-level technologies for implementation of both combinational and sequential systems. QCA have the potential to achieve low power dissipation and operate high speed at THZ frequencies. However large probability of occurrence fabrication defects in QCA, is a fundamental challenge to use this emerging technology. Because of these vari...
full textFault-tolerant adder design in quantum-dot cellular automata
Quantum-dot cellular automata (QCA) are an emerging technology and a possible alternative for faster speed, smaller size, and low power consumption than semiconductor transistor based technologies. Previously, adder designs based on conventional designs were examined for implementation with QCA technology. This paper utilizes the QCA characteristics to design a fault-tolerant adder that is more...
full textMy Resources
Save resource for easier access later
Journal title:
international journal of nanoscience and nanotechnologyPublisher: iranian nano society
ISSN 1735-7004
volume 10
issue 2 2014
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023